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ABSTRACT
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SIGNIFICANCE AND EXPLANATION

We derive bounds on the distance between an arbitrary point and the unique solution

of a strongly convex constrained optimization problem in terms of known violations of the

optimality conditions of the problem. These bounds are then used to construct effective

schemes for finding the unique smallest solution of very large sparse linear programs.
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ERROR BOUNDS FOR STRONGLY CONVEX PROGRAMS AND
(SUPER)LINEARLY CONVERGENT ITERATIVE SCHEMES FOR

THE LEAST 2-NORM SOLUTION OF LINEAR PROGRAMS

0. L. Mangasarian and R. De Leone'"

1. Introduction ",

We consider the problem

(1.1) min f(x) subject to x E S: {xjx > 0, g(x) 0}

where f: R ' -- R and g: R ' - R are differentiable and convex functions on R', S is

nonempty and in addition f is strongly convex on R', that is

(1.2) (,f(y) - 7f(T))(y - x) > k Ily - 12  "'

for all x, y in R" and some k > 0, where " 12 denotes the 2-norm. It follows immediately

* that (1.1) has a unique solution I in S. Our purpose here is that given any x in R' to

obtain a bound on the distance bx - 2112, in terms of the violations of the Karush-Kuhn-

Tucker conditions for (1.1) by x and ay nonnegative u in Rm (Theorem 2.2), or by z and

an "optimal" u chosen by solving a single linear program (Remark 2.6). The error bound

(2.7) of Theorem 2.2, which is also a Lipschitz continuity result of order (see (2.13)),

involves 3 parameters a, 0, -y which may not be readily computable. In Theorem 2.5 we

replace these parameters by corresponding upper bounds (xo), 3(1, t2), ,Y(i, fi) which are

readily computable from any primal feasible xo and any primal-dual feasible point (i, fi)

* hich satisfies the primal Slater constraint qualification. Related Lipschitz continuity

results are giver. by Daniel in t31 for positive definite quadratic programs. Stronger local

Lipschitz continuity results for more general programs are given by Robinson in 17,18>.
In Section 3 of the paper we turn our attention to what motivated the paper originally,

namely computing the least 2-norm solution of a linear program. Determination of the

'" On leave from CRAI. via Bernini 5, Rende, Cosenza, Italy. "5 "
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least 2-norm solution of a linear program has been the keystone of the successive over-

relaxation (SOR) methods for solving very large sparse linear programs not solvable by

standard pivotal packages 19,101. The first result of Section 3 is that the 2-norm II14I2 of

any solution i of a linear program bounds the Euclidean distance Ii- ±112 between i and

the least 2-norm solution of the linear program. This inequality, Iit - x112 < 1l2l, which

is obviously valid for any two points i and ± in the nonnegative orthant R' if i > ±, is

not valid if we merely have IIII2 > 11±112 as can be seen from the simple example in R 2

of 1 1 where 1112= I142 < Ili - 2. Theorem 3.2 gives an improved

bound on Ili - ±112 by solving a linear program. The final and computationally important

results of this paper, contained in Theorems 3.7 and 3.8, are linearly and superlinearly

convergent schemes for determining the least 2-norm solution of a linear program. We give

the essence of these results. In solving very large sparse linear programs one solves by an

SOR technique 8,9,101 a quadratic perturbation (3.3) of the linear program (3.1) for "suf-

ficiently small" value E of the pertuibation parameter c, that is e C (0, e] for some e > 0.

Until now there was no simple way of determining when e < i. Theorems 3.7 and 3.8 do

this as follows. Given a value E, of the perturbation parameter, we approximately solve

the quadratic perturbation problem (3.3) for x(c,) by an SOR or any other procedure to

a residual accuracy r(E,) defined by (3.14). Then we decrease e1 to Ej+j = ps, CA (0, 1) ',

and solve (3.3) to a residual accuracy r(,+i+) such that

(1.3) r(E,4 ) < vr(Ei) for some v < A 1/2 for linear convergence

and

(1.4) r(Ei) < !E' 71 for some > 0, 7 C (0,1), p > I for superlinear convergence

Theorem 3.7 shows that the sequence of approximate solutions {x(c,)} thus generated

converges to the unique least 2-norm solution of the linear program (3.1) at a linear rate

under (1.3). while Theorem 3.8 establishes p-rate superlinear convergence under (1.4).

We briefly describe now our notation and some basic concepts used. For a veclor

x in the n-dimensional real space R', x and z, will denote the vectors in R" with

components x, :x, and (x-), max {x,.0}. i . . respectively. For a norm.

x on R". the dual norm x , . on R" will be defined b,, x! : - max .ry, where

2
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xy denotes the scalar product. The generalized Cauchy-Schwarz inequality lxy' < Ijxflll
i*jyjj*, for x,y in R". follows immediately from this definition of the dual norm. For

n

1 p, q 1 oc, and 1. the p-norm (Z xjlP)l'i and the q-norm are dual normsl_<p q_ , nd q

on R ' 6j. If V •N is a norm on R". we shall, with a slight abuse of notation, let Ii
also denote the corresponding norm on R' form # n. R will denote the nonnegative

orthant or the set of points in Rn with nonnegative components, while R'x n will denote

the set of all m x n real matrices. For A E Rm " , AT will denote the transpose, A, will

in general denote the ith row, while TWAjI/ will denote the matrix norm [1,13] subordinate

to the vector norm 11" 1/3, that is 11Afl 1 := max IIAxIi#. The consistency condition

MJAxj!o < IAflsIjzII/ follows immediately from this definition of a matrix norm. We shall

also use 11 to denote an arbitrary vector norm and its subordinate matrix norm. For an

x in Rn we shall make use of some of the following norm-equivalence inequalities [19

(1.5) i :xfl, < < IXI < YXV'In,2 < njllxj,.-

A vector of ones in Rn for any integer n will be denoted by e. For a differentiable function

g: R n - R m , 7g(x) will denote that m x n Jacobian matrix at x. Similarly for a dif-

ferentiable function L(x, u): (z, u) G R' R, v7L(x, u) will denote the n-dimensional

gradient vector with respect to x, while vuL(x, u) will denote the m-dimensional gradient
vector with respect to u.

3
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2. Error Bounds for Strongly Convex Programs %

We first need a preliminary lemma which is essentially Lemma 2.1 of [IlI for the case

when f is strongly convex. Consider the dual of our nonlinear program (1.1) 17]

max L(x, u) - x 7.L(x, u)
(2.1) XUZ

subject to (x,u) c T:= {(x,u)lu > 0, 7,L(x,u) 0 0}

where L(x,u) is the standard Lagrangian

L(x, u): f(x) + ug(x).

The Karush-Kuhn-Tucker (KKT) optimality conditions for (1.1) are 17]

v- V,,L(x.u) \Vf(x) + u 7 g(x) >0 , x > 0, xv 0,
(2.2)

y V. L(x,u) -(x) 0, u >0, uy 0

If we make the definitions

(2.3) : F(z)

then the Karush-Kuhn-Tucker conditions take on the equivalent complementarity formu-

lation 2i

(2.4) z> 0, w F(z) > 0, zw- 0

Our prelirminary lemma establishes the strong monotonicity of the "twisted" derivative

F(z) under the strong convexity of f and convexity of g. -

2.1 Lemma Let f and g be differentiable on Rn, let g be convex on Rn and let

-" f be strongly convex on R" with positive constant k, then F(z) as defined in (2.3) is

continuous and strongly monotone with respect to r on R' x R , that is for all z: =(X)
*and ) in R" x R

(2.5) ( i.- )(F(-) F(t)) k x !2

Proof Just replace the last inequality of the proof of Lemma 2.1 of 11' by the inequality

of (1.2) above. -

4



We can now state and prove two error bound results.

2.2 Theorem (Error bound in terms of KKT residuals) Let f: R' -- R, g: R '- R' be

differentiable on R", let f be strongly convex on R' with positive constant k and let g q,.
convex on R". Let either g be linear and S # , or let g satisfy the Slater constraint Z.

qualification, that is

(2.6) g(.i) < 0, i > 0

for sone i R". Then for any (x,u) E Rn x R' the distance x - xl 2 to the unique

solution x of (1.1) is bounded by

)x ± '2 < k- /2 [x, L(x,u) - ug(x) + all(- V, L(x,u))jIi-(2.7).--
+ 3j (g(x)) 0  -11(-X)+ i ] 1/2 "'

where

(2.8) a: min(IxII + 1\ V f(x) 1 /k)

(2.9) 03: min m ui,
(u,v)EW

(2.10) y7:= in m ImvIj
(U,V)EW

where 11' - R 'n' " is the nonempty closed convex polyhedral set of optimal multipliers

(u ,) of the convex program (1.1) associated with the constraints g(x) < 0, X > 0.

Proof Since S - o and f is strongly convex, the program (1.1) has a unique solution

. Since eit her g is linear or the Slater constraint qualification (2.6) is satisfied there exist

optimal Lagrange multipliers (ft, V) C R m n such that (±, u, 0) satisfy the KKT conditions

(2.2) 7 and hence the set W of optimal Lagrange multipliers (u v) is nonempty, closed

and convex and in fact polyhedral here. Now for any x E S we have

f'-(.r) . r \,7 f(x) (x 2f(x)- f(x))(x r) k >- x
22.

where the second inequality follows from the minimum principal 7. Hence

5.

* Io
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and since x is an arbitrary point in S it follows that

(2.11) Jxjj. < min (I x'. + I, v f(x)l 1 /k) a
xES

where the minimum exists because of the continuity of the minimand on R ' and the
compactness of its level sets. Now let z: (x, u) E R'xR', (i) C Wand let z: (x, ).

Then by Lemma 2.1 we have that

2Ox Kr- ±112 < (z- )(F(z) - F(2))

zF(z) - zF(z) - zF(2) (Since 2F() 0)

< zF(z) + 2(--F(z)) + iL(±,it)(-x)+

(Since ug(x) < 0 and < < +)

X 7.1 L(x.u) ug() - x(- V,L(x,u)).+ + f(g(x)) -4 o(-)+.
< E x x L(.r, u) - gt(x) +i.T]'c .- i(- V, L(x, u)). l

, W '(g(x)) H10. + IltrI I J- ":-

Since (u. v) is an arbitrary point in 14' it follows that in the last expression above, Iljtj,.

and Iv I can be replaced by their respective minima over W, while 1±110:l can be replaced

by its upper bound a given by (2.11). Using the definitions (2.9) and (2.10) we have then

k~Lx - 12 < r L(x,u) - ug(x) + a I(- V L(xu)) I'-

-f 1I (g(x)), l. + yll (-x)- 11.

from which (2.7) follows immediately. I

2.3 Remark Note that the error bound of (2.7) is zero, if and only if x satisfies the

Karush-Kuhn-Tucker conditions (2.2) for some u (- R' . In fact if we define a perturbation

vector p (PI. P2, P:, P4) r RI fn r ' and define x(p) R" to be a solution of the

perturbed Karush-Kiuhn-Tucker conditions

, , I(X. ) 1,.q (X) 1), .

(2.2

(., .z '..- ,

Mx()) 1:
7)4Z

G "-.

.r). '4 ..:.



for some u in R' , then x(O) = ±, the unique solution of (1.1). It follows then from (2.7)

that

(2.13) I!x(p)- z(O)112  : A ,p:11 ..

where

(2.14) A (max {1.a,/3,-y/k)1" 2

The relation (2.13) shows that x(p) is Lipschitzian of order with a Lipschitz constant
2o

A, at p =0.

If the point (x, u) of Theorem 2.1 is both primal and dual feasible, the bound (2.7)

of Theorem 2.1 simplifies considerably as indicated in the following.

2.4 Corollary (Error bound for primal-dual feasible points) If in addition to the as-

sumptions of Theorem 2.2, x is primal feasible and (x.u) is dual feasible, that is x E S

and (x, u) G T, then
1.12

(2.15) x -X 12 < (xv, L(x,u) -ug(x))/,

This corollary partially extends a result of f12, Equation 2.15i for error bounds for

positive semidefinite quadratic programs to strongly monotone convex programs. Pang

has given related error bounds for nonlinear complementarity problems i15] and linearly

constrained variational inequalities 16.

We note that the error bound of (2.7) contains 3 parameters a,o, and " which

may not be easy to compute. These parameters can be replaced by bounds which are

*. more easily computable. In particular, if we let x be any primal feasible point, and let "

satisfy, in addition to the Slater constraint qualification (2.6), the dual feasibility condition

- (i', ) G T for some fi, then we have:

(2.16) a < ('): Jx Kd V f (1 C°)

(2.17) < (.): (i 7' L(i.) - fig(i)) /'Tin -,

7 .



where the inequality of (2.16) follows immediately from the definition (2.8) of a and the

inequalities (2.17) and (2.18) from Theorem 2.2 of Jill. We therefore have the following.

2.5 Theorem (Explicit error bound in terms of KKT residuals) Let the assumptions

of Theorem 2.2 hold including (2.6), let ' C S and let (ifi) E T for some fi E R'.

Then for any (x,u) E: R' x R' the distance Ix - ±112 to the unique solution x of (1.1) is

hounded by

X 2 <- k--'1 2 Ix v., L(x,u) - ug(x) + a(x)ll(- vx L(x,u))+H.
(2.19) -'-

+ ft) (g(x)) I+o + y(i, f)(-x)+ /2

,here nk(x"), 3(.ifi) and -(iit) are defined by (2.16)-(2.18).

2.6 Reinark \Ve note that for a fixed x, x", i and i, the choice of u in the bound

(2.19) can be optimized by solving the following linear program in order to obtain the best

)0hound ol X ':2:

in U (77g(x)r- g(x)) i a(x')es
RH"

(2.20) - f(X)- u V g(X) fS

u, s>O .

* hInder the assulliptions of Theorem 2.5, the objective funct ion of the feasible linear program

(2.20) is bounded below and hence is solvable. Any solution (u,s) of (2.20) will provide

an optimal 71 which will give the best bound in (2.19) for the given fixed x, x', i and fi.

.- ~°.
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3. Application to Least 2-Norm Solution for Linear Programs

In this section we use the error bound for strongly convex programs to derive two

simple bounds (Theorems 3.1 and 3.2) for the least 2-norm solution of a linear program in -

terms of any other solution of the linear program. More importantly we give in Theorems

- .7 dad 3.8 linear!. and superlinearly convergent iterative procedures for determining the

heast 2-norm solution of a linear program. The proposed schemes should be very helpful

in precisely determining the manner in which the perturbation parameter C and its corre- IF

sponding error residual r(E) (3.14) should be decreased in the highly effective successive

overrelaxation methods for solving very large sparse programs 18,9,101.

We consider the linear program

(3.1) min cx subject to Ax > b, x >0
X

where c -R R . b R t?'  and .4 R R " ' , and its dual

(3.2) max bu subject to ATU < c, u > 0
U

It is known 9,10 that x is the unique least 2-norm solution to (3.1) if and only if t is the

utnique solution to the quadratic program

(33) rain cx + -xx subject to Ax> b, x >0
X 2

for all E (0, E for some g > 0. The dual to the quadratic program (3.3) is 17v

max - xx + bu subject to v Ex - ATu + c, (u,v) > 0
2

Now if (. i) is an arbitrary optim.al point for the dual linear programs (3.1)-(3.2),

tlici for aij F (0. . the point (', ,i,: = i - ATf- c) is feasible for the dual quadratic

programn (3.3)-(3.4) and hence by Corollary 2.4

* IF) CX - El. - b ) 1/2 '

where x is the least 2-norm solution of the linear program (3.1). Hence we have established

it h following.

-97.
9 'S::
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3.1 Theorem (Bound for the distance between an LP solution and the least 2-norm LP

solution) For the linear program (3.1)

(3.6) Ii - 112 _ 111 2

where i is any optimal solution to (3.1) and ± is the unique optimal solution to (3.1) with

least 2-norm.

We can improve on the bound (3.6) if instead of using fi which is a solution of the

linear program (3.2) we use u(:i,e), which minimizes the bound of (2.15) for the given

linear program solution i, and such that (I,u(I,E)) is feasible for the dual quadratic

program (3.3). Hence we take u(i,E) as a solution of the linear program

*. (3.7) max bu subject to A u c 4 E , u>0

This linear program is solvable because it is feasible (its feasible region contains that of

(3.2)) and its objective function is bounded above by (c - )ri. Hence bu(i,E) bi ci^

and the bound (3.5) is improved as follows

(3.8) - ±112 < ) .2

Since the bound of (3.8) is valid for all E & (0,sK and bu(x.i) is a bounded nonincreasing-"

function of E we can take its limit as E 1 0. We summarize this result in the following.

3.2 Theorem (Optimal bound for the distance between an LP solution and the least

2-norm LP solution) For the linear program (3.1) the following bound holds where i is

any optimal solution to (3.1), ± is the least 2-norm solution of (3.1) and u(i) is a solution ..5

of the linear program (3.7):
( 3 .9 ) Ii i ..2 < l i r n bi 2-e. /

The following example illustrates the bounds (3.6) and (3.9).

3.3 Example min X2 s.t. - x> 2. X2 1. (X , ) 0

Problem (3.7) for this LIP with " - is

(3.10) m ax 2u, u2 s.t. 1  " . 1 E. (1,1. t1 ) 0

1.0

. . . ... . . . . . . . . . . .. . . . . . . . .. . . , . - - . . . . . .. .. . . . . ., ...:: : ..: : _ .•" : : :: : : : :: : : :: : : : : : : : : :: : : : : : : : == = == = == = = = = = == = .: : : : *- : , - .: . . - :. - . . . .. . . .' . -. .: . - . .: .j - . -. ' . .: - -: : , -° -• -"".""- . .'""- """- ""*- """. . -""" . ''- '''- """.".-.. . .. .".. .".. . .-.. . ... ".-".. . . . . . . .. ''" ' -".-,' '"," '"• -' ,""'" ':".",": _



The primal solution set is . {x E R 210 < X1 < 2, x2  1) and the least 2-norm solution

is t = We then have

11 2 - 1- 212 < 1 P2 -2

which is the bound (3.6). The solution to (3.10) is u(1, e) ( 0 and hence bu(5, c)

1 + c and the bound (3.9) gives 6

I!2 < lir (2 1 - - =:

which is a sharp bound for this problem.

3.4 Remark We note that under certain assumptions, such as the strong second or-

.- der sufficient optimality condition and linear independence of the gradients of the active

constraints 14, p.441 the function bu(1, E) is differentiable with respect to E at E - 0

* and A (bu(.i, E)) 1,: :i. For such a case the bound (3.9) degenerates to (since c-

* bu(1,0))
. T d (bu(.i. e)) 0 "2.. d_

and hence i =, which of course is the consequence of the second order sufficient opti-

mality condition which implies that x is a locally and hence globally unique solution of

the linear program (3.1).

We conclude by giving linearly and superlinearly convergent procedures for obtaining

the least 2-norm solution of the linear program (3.1) based on the error bound (2.7).

These procedures should be very useful in the successive overrelaxation (SOR) procedure

for solving (3.3) !8,9!. The usefulness comes in determining a method for cutting the size

of the parameter E in (3.3) and the accuracy to which (3.3) is solved for each E. This

results in a precise scheme that drives E below the value t, which in general is unknown

and very difficult to compute. We first outline how t he proposed procedure is applied. To

solve (3.3) for a fixed c, we apply an SOR procedure ;8.9' or any other procedure to its

dual (3.4) with the variable x eliminated through the dual constraint

4.

(3.11) x (A T u v - c)

11]"':?

-: :-. i -. :'.. : -2 :'-- ,-2 ... .-. ,-.-2 .. -. - -. ;-.- ---. - -...- ;,.- -. ,.:- - ..- -. :. ...-.-. 2_. ..-.---... ..-. -.- .



and thus obtaining the dual problem

(3.12) min 0(u,v):= min 1A v + V 2  Ebu
(u,v)>_ (uv) X 2 2

which would have to be solved for a sufficiently small c E (0,e1. Since we do not know a

priori how small E need be, we consequently need to solve (3.12) for a decreasing sequence
" of E values. If an iterative procedure such as SOR is used to solve (3.12), as in the case of

very large sparse linear programs 18,91, we would have a procedure with an infinite inner,.

• "loop. Our present proposed approach now eliminates the need to solve (3.12) exactly and

"* consists of solving (3.12) only to an explicit finite accuracy after which e is decreased

sufficiently to generate a linear or superlinear rate of convergence of the overall procedure.

To define our procedures we need to define approximate and exact solutions to (3.12)

and (3.3). For that purpose we first give the necessary and sufficient Karush-Kuhn-Tucker

-_ optimality conditions for (3.12):

(a) vtO(u,v) A(ATu + v - c) - Eb >0 --

(b) u V, v) 0

(c) U> 0
* (3.13)

(d) TtO(u,v) ATu + v c > 0

(e) v V, (u,v) - 0

(f) v > 0

" Now we make the following definitions.
UL

3.5 Definition (Exact solutions to (3.12) & (3.3)) For a fixed positive E an exact solution

to the dual quadratic program (3.12) is designated by (u(E), v(e)) and hence must satisfy

(3.13). The corresponding ±(E) in R" defined by (3.11) with (u,v) (it(e), f(c)) is an
exact solution to the quadratic program (3.3). The set of all (u(E), io(e)) which are exact

. solutions to (3.12) for a fixed positive e is designated by W().

3.6 Definition (Approximate solutions to (3.12) & (3.3)) For a fixed positive e any

"* point in R " ' is an approximate solution to the dual quadratic program (3.12) and

is designated by (u(E), i'(F)) . The corresponding x(c) in R' defined by (3.11) with

12

.I°
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(,.,,) (u(E), v(s)) is an approximate solution to the quadratic program (3.3). The V'

residual r(E) associated with (u(E), v(e), x(E)) is defined by

(3.14) r(E): ]x(E)v() + u(c)(Ax(E) - + 1(b - Ax(E))+llo + II())+oo]

Note that for an e > 0 and an approximate solution (u(E), v(c)) to (3.12) and a

corresponding approximate solution x(e) to (3.3), r(E) = 0 if and only if (u(c), v(cj) E

WV(E) and x(E) E( ). We also have that for c E (0, ] for some E > 0, t(E) = , where

± is the least 2-norm solution of the linear program (3.1) 19,10].

We are prepared now to state and prove our linearly and superlinearly convergent

procedures.for computing the least 2-norm solution of the linear program (3.1) and we

* begin with the former.

*" 3.7 Theorem (Linearly convergent procedure for least 2-norm solution of a linear pro-

gram) Assume that the linear program (3.1) is solvable and that b € 0. Let {Eo, ..l }
be a decreasing sequence of positive numbers such that

(3.15) ci+= Ac, for some ju G (0,1)
!K

and let {u(Ei), v(e-i), x(Ej)} be a corresponding sequence of approximate solutions to

(3.12) and (3.3) satisfying Definition 3.6 and such that their residuals as defined by (3.14)

satisfy

(3.16) r(ci+,) <_ vr(ei)

for some v > 0 and such that

(3.17) V < p1/2

Then the sequence {x(c,)} converges to t, the least 2-norm solution of the linear program

(3.1). al the linear root-rate 714]

(3.18) Ix(Ei)- t112 < 6(v/ 1/ 2 )i for i >

for some constant 6 and some integer t.
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Proof By Theorem 2.2 we have ..

(3.19) - t(E)112 
< E[/2 fx(Ej)v(Ej) - u(e,)(Ax(E2 ) -b)

+ #(E7,)ll (b - Ax(E,))+ + + -y(E,)J1 (-x(Ei)) ] i/2
r% where

(u~)E tI bTu + c 6±(E ) + e±e)±e/
(3.20a) /3(eT):= min Ihull1  min eu

(3.20b) "() (vmin 11, {i n ev
(UV)Cw(c,) (U,,,)>o bu C.(E,) + E,±(e,)±(E,)/2

By the fundamental theorem for the existence of basic feasible solutions for fin-

. ear programs 15, Theorem 3.31, it follows that for each E, there exist basis matrices

Bi(ei), B 2 (Ei), that is (n-+ 1) × (n + 1) nonsingular submatrices of b ,such that

(3.21a) O(E,) (e O)BI(e,)' ((e ±(E) + ) .
Ct (E,) + E~x (E1)X(E )2

C I(e,) ±(3.21b) (e i) (0 e)B2(,) - 1  (Ej) + E,[X(,)At(E 2

Since there are only a finite number of basis matrices in we have that upon
b 0

taking B as that basis matrix with largest 1-norm,

fl(Ej) or yI(Ei) < JIB III Ei±(E1 ) + C

" (3.22) c±(e,) + E,±(E,)±(6,)/2

JIB- 11 'I I[leix(E,) + li I I c±(Ez) -- r.(j~ 2 )/
Now

(3.23) x(E,) z for E E (0, e,

where ± is the unique least 2-norm solution of the linear program (3.1); and for we

have from (2.11) that

( < nll±(Ei);j,, n rain {'x4j t EKx -Cli 1Ax . b, r 0}

Kn muin {i!Xc lax -b. x :O 7

14



Using (3.23) and (3.24) in (3.22) gives

#(ej) or -I(ci) < IB- 1111 [max {flitil, + 1Iclij, cct + JIcj}
(3.25) + max {ic±I + cx/2, l1cH002 + e'j 2 /21]

Hence combining (3.19) and (3.25) gives %

(3.26) 1lx(E,) - -(Ei)12 < 1/2 or(E,)

where r(Ei) is the residual defined in (3.14) and

(3.27) a:= (max {1, })1/2

From (3.15) we have that

(3.28) E, =u E'o ,i 0, 1, "."-

and from (3.16) we have that

(3.29) r(Ei) < v' r(Eo) ,i 0,1,...

Combining (3.26), (3.28) and (3.29) gives 1-.-"

(3.30) !lX(Ei) - t(Ei)d2 _ -C / r(eo) (v/l/p)i_

Observing that vl/ /2 < 1 from (3.17), and that t(=) • for E1 E (0, ] it follows that

lim x(c,) s * By defining

(3.31) 6: CK 1/ 2 r(6o)

and i as the smallest integer such that E, < t, we have from (3.30) and the fact that
(e,)= for Ej e 2, that for i > i

I* , - < : X(E,) .(E,) 2 + I±(E,) - 1'2

(3.32)
hX(E,) - ±(Ei)Il2 < 6(V/IPtl 2

which establishes (3.18). I
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We finally note that a superlinear root-rate of convergence 141 can be achieved in the

procedure of Theorem 3.7 if we cut the residual r(ei) more sharply than that given by

* (3.16)-(3.17). In particular we have the following.

*i 3.8 Theorem (Superlinearly convergent procedure for least 2-norm solution of a linear

* program) Let the assumptions of Theorem 3.7 hold with (3.16) and (3.17) replaced by

(3.33) r(E,) < Ei/2r7 P

for some > 0, tj E (0, 1) and p > 1. Then the sequence {x(E,)} converges to t, the

least 2-norm solution of the linear program (3.1), at the superlinear root-rate of

" (3.34) 1x(Ei) - 0I12 < oprj'' for i >

for soire integer z and a defined by (3.27).

Proof From (3.26) and (3.33) we obtain,

(3.35) IIx(E,) - ±(Ei)112 < o0'i

Since (e,) ± for i > i for some -, (3.34) follows from (3.35), and since rP' 0 0, x(E2 ) -

• , x~. I :::
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